Global Streaming#

Enable streaming mode for the main LLM generation at the top level of config.yml.

Configuration#

streaming: True

What It Does#

When enabled, global streaming:

  • Sets streaming = True on the underlying LLM model

  • Enables stream_usage = True for token usage tracking

  • Allows using the stream_async() method on LLMRails

  • Makes the LLM produce tokens incrementally instead of all at once

Default#

False


When to Use#

Streaming Without Output Rails#

If you do not have output rails configured, only global streaming is needed:

streaming: True

Streaming With Output Rails#

When using output rails with streaming, you must also configure output rail streaming:

streaming: True

rails:
  output:
    flows:
      - self check output
    streaming:
      enabled: True

Python API Usage#

Simple Streaming#

from nemoguardrails import LLMRails, RailsConfig

config = RailsConfig.from_path("./config")
rails = LLMRails(config)

messages = [{"role": "user", "content": "Hello!"}]

async for chunk in rails.stream_async(messages=messages):
    print(chunk, end="", flush=True)

Streaming With Handler#

For more control, use a StreamingHandler:

from nemoguardrails import LLMRails, RailsConfig
from nemoguardrails.streaming import StreamingHandler
import asyncio

config = RailsConfig.from_path("./config")
rails = LLMRails(config)

streaming_handler = StreamingHandler()

async def process_tokens():
    async for chunk in streaming_handler:
        print(chunk, end="", flush=True)

asyncio.create_task(process_tokens())

result = await rails.generate_async(
    messages=[{"role": "user", "content": "Hello!"}],
    streaming_handler=streaming_handler
)

Server API#

Enable streaming in the request body by setting stream to true:

{
    "config_id": "my_config",
    "messages": [{"role": "user", "content": "Hello!"}],
    "stream": true
}

Token Usage Tracking#

When streaming is enabled, NeMo Guardrails automatically enables token usage tracking by setting stream_usage = True for the underlying LLM model.

Access token usage through the log generation option:

response = rails.generate(messages=messages, options={
    "log": {
        "llm_calls": True
    }
})

for llm_call in response.log.llm_calls:
    print(f"Total tokens: {llm_call.total_tokens}")
    print(f"Prompt tokens: {llm_call.prompt_tokens}")
    print(f"Completion tokens: {llm_call.completion_tokens}")

HuggingFace Pipeline Streaming#

For LLMs deployed using HuggingFacePipeline, additional configuration is required:

from nemoguardrails.llm.providers.huggingface import AsyncTextIteratorStreamer

# Create streamer with tokenizer
streamer = AsyncTextIteratorStreamer(tokenizer, skip_prompt=True)
params = {"temperature": 0.01, "max_new_tokens": 100, "streamer": streamer}

pipe = pipeline(
    # other parameters
    **params,
)

llm = HuggingFacePipelineCompatible(pipeline=pipe, model_kwargs=params)