Seed Datasets
Seed datasets let you bootstrap synthetic data generation from existing data. Instead of generating everything from scratch, you provide a dataset whose columns become available as context in your prompts and expressions—grounding your synthetic data in real-world examples.
When to Use Seed Datasets
Seed datasets shine when you have real data you want to build on:
- Product catalogs → generate customer reviews
- Medical diagnoses → generate physician notes
- Code snippets → generate documentation
- Company profiles → generate financial reports
The seed data provides realism and domain specificity; Data Designer adds volume and variation.
The Basic Pattern
import data_designer.config as dd
from data_designer.interface import DataDesigner
# Define your model configuration
model_configs = [
dd.ModelConfig(
alias="my-model",
model="nvidia/nemotron-3-nano-30b-a3b",
provider="nvidia",
)
]
config_builder = dd.DataDesignerConfigBuilder(model_configs=model_configs)
# 1. Attach a seed dataset
seed_source = dd.LocalFileSeedSource(path="products.csv")
config_builder.with_seed_dataset(seed_source)
# 2. Reference seed columns in your prompts
config_builder.add_column(
dd.LLMTextColumnConfig(
name="review",
model_alias="my-model",
prompt="""\
Write a customer review for {{ product_name }}.
Category: {{ category }}
Price: ${{ price }}
""",
)
)
Every column in your seed dataset becomes available as a Jinja2 variable in prompts and expressions. Data Designer automatically:
- Reads rows from the seed dataset
- Injects seed column values into templates
Seed Sources
Data Designer supports three ways to provide seed data:
📁 LocalFileSeedSource
Load from a local file—CSV, Parquet, or JSON.
# Single file
seed_source = dd.LocalFileSeedSource(path="data/products.csv")
# Parquet files with wildcard
seed_source = dd.LocalFileSeedSource(path="data/products/*.parquet")
Supported Formats
- CSV (
.csv) - Parquet (
.parquet) - JSON (
.json,.jsonl)
🤗 HuggingFaceSeedSource
Load directly from HuggingFace datasets without downloading manually.
seed_source = dd.HuggingFaceSeedSource(
path="datasets/gretelai/symptom_to_diagnosis/data/train.parquet",
token="hf_...", # Optional, for private datasets
)
🐼 DataFrameSeedSource
Use an in-memory pandas DataFrame—great for preprocessing or combining multiple sources.
import pandas as pd
df = pd.read_csv("raw_data.csv")
df = df[df["quality_score"] > 0.8] # Filter to high-quality rows
seed_source = dd.DataFrameSeedSource(df=df)
Serialization
DataFrameSeedSource can't be serialized to YAML/JSON configs. Use LocalFileSeedSource if you need to save and share configurations.
Sampling Strategies
Control how rows are read from the seed dataset.
Ordered (Default)
Rows are read sequentially in their original order. Each generated record corresponds to the next row in the seed dataset. If you generate more records than exist in the seed dataset, it will cycle in order until completion.
config_builder.with_seed_dataset(
seed_source,
sampling_strategy=dd.SamplingStrategy.ORDERED,
)
Shuffle
Rows are randomly shuffled before sampling. Useful when your seed data has some ordering you want to break.
config_builder.with_seed_dataset(
seed_source,
sampling_strategy=dd.SamplingStrategy.SHUFFLE,
)
Selection Strategies
Select a subset of your seed dataset—useful for large datasets or parallel processing.
IndexRange
Select a specific range of row indices.
# Use only rows 100-199 (100 rows total)
config_builder.with_seed_dataset(
seed_source,
selection_strategy=dd.IndexRange(start=100, end=199),
)
PartitionBlock
Split the dataset into N equal partitions and select one. Perfect for distributing work across multiple jobs.
# Split into 5 partitions, use the 3rd one (index=2, zero-based)
config_builder.with_seed_dataset(
seed_source,
selection_strategy=dd.PartitionBlock(index=2, num_partitions=5),
)
Parallel Processing
Run 5 parallel jobs, each with a different partition index, to process a large seed dataset in parallel:
# Job 0: PartitionBlock(index=0, num_partitions=5)
# Job 1: PartitionBlock(index=1, num_partitions=5)
# Job 2: PartitionBlock(index=2, num_partitions=5)
# ...
Combining Strategies
Sampling and selection strategies work together. For example, shuffle rows within a specific partition:
config_builder.with_seed_dataset(
seed_source,
sampling_strategy=dd.SamplingStrategy.SHUFFLE,
selection_strategy=dd.PartitionBlock(index=0, num_partitions=10),
)
Complete Example
Here's a complete example generating physician notes from a symptom-to-diagnosis seed dataset:
import data_designer.config as dd
from data_designer.interface import DataDesigner
data_designer = DataDesigner()
model_configs = [
dd.ModelConfig(
alias="medical-notes",
model="nvidia/nemotron-3-nano-30b-a3b",
provider="nvidia",
)
]
config_builder = dd.DataDesignerConfigBuilder(model_configs=model_configs)
# Attach seed dataset (has 'diagnosis' and 'symptoms' columns)
seed_source = dd.LocalFileSeedSource(path="symptom_to_diagnosis.csv")
config_builder.with_seed_dataset(seed_source)
# Generate patient info
config_builder.add_column(
dd.SamplerColumnConfig(
name="patient",
sampler_type=dd.SamplerType.PERSON_FROM_FAKER,
params=dd.PersonFromFakerSamplerParams(),
)
)
config_builder.add_column(
dd.ExpressionColumnConfig(
name="patient_name",
expr="{{ patient.first_name }} {{ patient.last_name }}",
)
)
# Generate notes grounded in seed data
config_builder.add_column(
dd.LLMTextColumnConfig(
name="physician_notes",
model_alias="medical-notes",
prompt="""\
You are a physician writing notes after a patient visit.
Patient: {{ patient_name }}
Diagnosis: {{ diagnosis }}
Reported Symptoms: {{ symptoms }}
Write detailed clinical notes for this visit.
""",
)
)
# Preview
preview = designer.preview(config_builder, num_records=5)
preview.display_sample_record()
Best Practices
Keep Seed Data Clean
Garbage in, garbage out. Clean your seed data before using it:
- Remove duplicates
- Fix encoding issues
- Filter out low-quality rows
- Standardize column names
Match Generation Volume to Seed Size
If your seed dataset has 1,000 rows and you generate 10,000 records, each seed row will be used ~10 times. Consider whether that's appropriate for your use case.
Use Seed Data for Diversity Control
Seed datasets are excellent for controlling the distribution of your synthetic data. Want 30% electronics, 50% clothing, 20% home goods? Curate your seed dataset to match.